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Abstract. A method is developed for an accurate evaluation of the electric field gradient (EFG)
tensor in the cubic lattices of point charges. [t is shown that only two values of the geometrical
factors similar to the Madelung constants are necessary for calculation of all EFG components
at all sites in all standard cubic crystals. The gfG tensor at all carbon atoms in the different
phases of alkali-doped fullerene crystals is presented as an example. It is demonstrated that a
cubic network of zero potential lines with halved lattice constant exists in perovskite crystals
and some fullerites. A numerical procedure is proposed for calenlation of EFG at any point of
the unit cell for the arbitrary cloud of point charges. The method is based on the presentation
of ¢rystal sums by means of the Mc¢Donald functions.

1. Introduction

The calculation of the electric field gradient (BFG)™in ionic lattices is of some interest in
connection with the application of nuclear quadrupole resonance (NQR) methods to crystals
with mainly ionic bonding, such as copper oxide ceramics, etc [1-3]. The expansion of the
crystal potential over spherical harmonics in the vicinity of the node considered is usually
used for this purpose [1]. The modified Evjen method [2-4] is also applicable.

The present paper extends the method of Madelung constant calculation developed in
[5,6] on EFG. It is useful to cast gradient components ¢,,, in a form similar to the electrostatic
potential V' = {e/R)&

Qv = (¢/ Ry )

where &, is a geometrical factor similar to the Madelung constant £&. The proposed
technique ensures the exact calculation of the geometrical constants &, and accurate
comparison of the data for different crystals. Moreover, this representation allows one
to express all EFG components at the nuclei for all the usual ionic cubic crystals in terms
of two constants only.

In the more complicated crystal YBa;CuzO; the geometrical factors of EFG components
will be presented as linear forms with known coefficients of effective charges on two types
of inequivalent oxygen and copper atoms. Thus the possibility arises of finding the charge
reclistribution between these atoms directly from NQR measurements. It may be recailed that
the properties of high-temperature superconducting ceramics are often discussed in terms
of charges on Cu and O. _
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612 M M Mestechkin

2. Geometrical factors of model systems

We shall use decomposition of the cuhbic crystal potential into contributions from two
model systems, L and M, already used for calculation of Madelung constants and potential
geometrical factors for an arbitrary point [5,6]. The charge distribution of the first one
(L) consists of the point charges of tdentical sign in the whole plane, and the charge
signs in parallel planes alternate. The second system (M) consists of parallel lines of
identical charges whose signs alternate in the perpendicular plane. The potential for these
has been expressed in terms of the zeroth-order McDonald function [6]. It only remains
to differentiate these expressions for the present purpose. The technique proposed is rather
universal and applicable independently of the existence of non-zero net dipole moment of
the unit cell in contrast to the method of [4].

The expressions for the EFG components follow directly from equations (5) and (12} of
[6). For the L system these are

o0
En=-— 'Z’ Colupy, 2)

¥, =00

fo=(1/u?) Y Ix == (2 — D*1Calupn, /0%

$ =00

SXX

It

(50— §22)/2 Eyy = — (6o +£2)/2

2 @
§ = Z [(x — 8}/ 0 )C1 (1P, 2)
Ey= Y [(x =) —0/pE1Ca(upy 2)
Si=—00
&= D [y —1)/0s)Ci(upy, 2)
where the following notation is used:
Ci(v,2) = 4m% Y (2 — 1)*Ki(m (2L — D)) cos[z (24 — 1)z] i=0,2
=1
o N
Clv,7) =4 Ko(m(2¢ — 1)v)cos[m(2¢ — 1)z] (3)

£=1

Ci(v, z) = 4x? Z(ze — 12K (m (28 — D) sin[m (28 — 1)z] i =

£=1

—

and K; is the ith McDonald function.
Similar expressions hold for the M system, where the geometrical factors are denoted
by S’
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Gy = —(1/u%) Y (=1)°Colt, )

S ==00

E=/a) Y (11 — 5) = (2 = 12 /u'1Calzr, Y)/T2

¥, =00

Lex = (& — fy}')/z L7z = _@ + g_vy)/z

Loy = (1/u3)” rim(—l)-*cx — $)C1 (Ts ¥}/ T @
Lag = (1/u*) i (1" (x = )z = Doz, ¥)/ 75
bye = (1/u*) \_ Iiﬁ(—l)-"(z — £)Cy (st ¥} -
Here
o=@ =Y+ -0°  g=G-9'+@-0 5)

z Is measured in units of d, the distance between opposite charges, and x and y similarly
are measured in units of ud, the distance in the xy plane. The prime on the sum denotes
missing out the term s =t = 0 for x = y = 0. It should be replaced by the constant

—42(—-1)’_‘/!{3 = 3.6001707 ‘_ 6)
k=1 -
for z = 0 and by
BB @)+ : 0

for z # 0 where 3(z) is the known function [7] connected with the logarithmic derivative
of the Buler I'-function. These series converge much more rapidly than 1/p0* except in the
vicinity of x ="y = 0. ’

For instance, we have for the points A and F (figure 1) for u =2

£ (A) = o = 1.880136 E(F) = B = 054174 (8)

The accuracy may be controlled by means of symmetry conditions, which hold for the M
systemn on substitution of x by y and vice versa in consequence of some latent identities
between sums of the McDonald functions.

The number of independent EFG factors for the main points may be significantly reduced
on account of the symmetry requirements for the potential geomeiric factors. These are
expressed by equation (6) from [6] (we use this occasion to correct a misprint in sign in
this equation)

f.y, )= fl=x.y,2) = flx,=y. 2= flx,y,—2) = f(y,x,2) )
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Figure 1. The maimn points of the cubic cell,

which is identical for both systems. The pericdicity condition looks Jike

Flx=1/2,y,2) = flx+1/2,y,2)
Flo,y=1/2,2) = flx,y+ 1/2,2) (10
—flx,y,z=1/2) = flx,y, 2+ 1/2)

for the L system. Sigps should be changed for the M system in equations (10).
Differentiation of equations (9) shows that mixed EFG components with the subscript of
the perpendicular to some face vanish on this face. Therefore the EFG tensor is diagonal
on edges. The same conditions hold in “vertical’ planes that pass through the cell centre
N (figure 1). Thus, the EFG tensor is diagonal along the perimeter LEFN in the L system,
and only the xz component is non-zero on the line LN. Since the potential vanishes in
the horizontal plane NML, the components £, £,y and &, also vanish there, as well as
22 = —&xx ~— &y, and since the EFG tensor is diagonal at L, M and N it completely vanishes
at these points. '

The roles of the central vertical and horizontal planes in the M system are interchanged
as a result of the change of sign in equation (10). Therefore the EFG tensor is diagonal on
lines ML and AE, and by similar reasoning it vanishes at L. and E. Thus on the three lines
of the square perimeter LNFE only Zx, is non-zero, and on LE only {y; is non-zero.

The additional restrictions follow from the connections between potential factors of L
and M systems (equations (10) and (11) in [61}:

“:‘xx(xsyszsu)=§yy.(YaxsZ:H) fx,z(x:)’aza “)=‘§yz(J’sX,Z,u) (11)

ete, and similarly for ¢:

Lox (%, ¥, 2) = 8[Ere (x/2, 2, y) ~ £y ((x — 1)/2, 7, )}
Laa(x, ¥, 2) = BlEy(x /2, 2, y) — &y ((x — 1)/2, 2, )]
Cop€x, ¥, ) = 88 (x/2, 2, y) = £ ((x — 1)/2, 2, )]
Cay(®0 ¥, 2) = 86 (0 /2, 2, ¥) — £ ((x = 1)/2, 2, Y)1.

(12}
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The values of u if not indicated explicitly are 1/2 for ¢, 1/./2 for ¢/, 2 for &. In particular,
for the vertical line passing through A we have

£xx(0, 0, 2) = B[£::(0, 2, 0) — £:.(1/2, 2, 0)]

$yy(0,0, 2) = 8[—£xx(0, 2, 0) — £3y(0, 2, 0) + £2x(1/2, 2, 0) + §,,(1/2, 2, O}].

Taking into account the symmetry of the M system to this axis £ = {yy, we obtain a
relation between EFG components of the L system at the horizontal edge and the parallel
line passing through the centre

28y (x, 0, 0) & §2x(x, 0,0) = 265, (x, 1/2, 0) + &xx(x, 1/2,0). (14)
From this it follows for x = 0 and x = 1/2 on account of notation (8) that

30 = 25(B) + £L(B) 38 =28, (B) + &(E)
where the subscripts denote orthogonal and parallel to the edge AD components. Then

(13

EE=28-0  §E=2-45 (13)
In the same way from equations (I13) and (12) we have

£xx(G) = §yy(G) = B[EL(P) — §1.{Q)] = 4[§,(Q) — §(P)] (16)

Loy (H) = 168, (R") = 42.481 894, (17)

The BFG components for the atomic positions in the M system with # = 1/.,/2, which
also enter compositions forming standard cubic lattices [5], are also expressed through the
same constants « and 8. From equation (9) in [5] presented in the form

glx.y. 2, 1/ /D +glx—1/2,y—1/2,2,1//2)

=2f &+ /2, y—x )+ flz,x+y—-1}/2,y—x,2) (18)
we have
Lty D+ i = 1/2,y=1/2,2)

=4¢(z, x+ /2,y —x)+ ¢z, (x +y—1)/2,y — x)]
Ly ¥, D+ 8= 1/2,y = 1/2,7)
=48, (x+y)/2, y —x)+ 2z, (x + y = 1)/2, y — x}] (19)
Coy (6, ¥, 2) + Ly (6 = 1/2,y = 1/2,2)
=4x(z, e+ 9)/2,y = x) +x(z, e+ y = 1)/2, y = x)]
@ = —&x; — 28y; U= —§ + 28, X =~ — 25,
From these it immediately follows that
LA =88 to (M) = —8at £y (F) = 24a Loy} = 248. (20)
In the same way from equation (12) the equation for the quartered points results:
§xy(1/2, y, 2) = 1662:(1/4, 2. ¥)
R+ LR =8E(P) LR — £, R) =8, () 1)
£ (G) = —41§(P) + &,(Q)] $oy () = 8[2£1 (P) + §1.(Q)]
where the values of & may be taken into account:
£ (P) = 16.685 136 £(Q) = 0.125925
£, (P) = —6.72046 £.(Q) =1.559118.
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3. Lattice contributions to EFG of atomic positions in standard cubic crystals

The potential of the standard cubic lattices including aikali-doped fullerites has been
expressed in terms of a similar quantity for the systems L and M [6]. Since this expression
is valid for an arbitrary point of the crystal volume the EFG components can be immediately
obtained by a proper differentiation. These are given in table 1 (by means of this table
some misprints that slipped into table 1 of [6] may be corrected). The results are presented
in terms of the tensor functions &4, {py and ;. It is convenient to use rotated (by 45°)
tensor 7, instead of ¢,

Mex = (Lo + Lyy — 280,)/2 My = G+ Gy T2 d2 nay =, — z;xlfzm)
TLtz = (g;:z - g;:z)/‘\/z nyz - (g_;zl + g;z)/'\/z-

Then suitable EFG components of the crystals are presented in terms of £,,, £, and »,, with
the same subscripts by means of equations from table 1. (The similarity of subscripts gives
the possibility to omit them for the sake of brevity.} The results for the other crystals are as
simple as those from table 1 but are not given explicitly in order to avoid the cumbersome
equations for each component separately. Instead, all these have been programmed.

Table 1. Gradient factors of cubic crystuls.

Crystal Gradient factor N

NaCl £@x,2y,7) = t2x, 2y 2+ 1/2) o

CsC x4y y—x D +8EE - /2,y — 1/2,22)

CaFy T2, 2y, ) — $(2e. 2y, 24+ 1/2) + 8n(2x + 2y, 2y — 2x, 22) + 645(2x — 1/2,2y — 1/2. 42)
Zn3 P22, 2y.2) — 022, 2y, 2+ [/2) 5+ 802k + 2y, 2y — 2, 22) ~ L (2% — /2,2y ~ 1/2,2 - 1/4)

Fo2x— 1/2,2y — 172, 2+ 1/4 + 64E(2x — 12,2y — 1/2, 42}

Cuz0 @x—1/2.2y — 12,2~ /4 — 8§ (2x, 2y, 2) — §(2x — 1/2, 2y — 12,2 4 1/4)}/2
—4n(2x + 2y, 2y —2x,22) = B28(2x — 1/2,2y — 1 /2, 42) — 8E(x, y. 22)
L8 (x = 1/2, y— 1/2,22) — L(2x, 2y, 2% L/2)/2

BaBiO; L6[E(x, y, 22) = E(x = /2,y —1/2,20)] 4+ 20 (2x, 2y, 2)

Cin AT 2[r@x, 2y, 24 1/2) —~ £(2x, 2y, ) — 45(22 + 2y, 2y — 2x, 22) — 326 (20 — 172, 2y — 1/2,42))
FCC -

CIAT  I6[5(x — /2,y — [/2.22) — £(E, v, 200 (2%, 2y, 2) — £ (28, 2y, 2+ 1/2)
BCC -~

In particular the values of EFG in the lattice sites can be obtained by means of table 1
and the values of £, { and ¢’ mentioned in the preceding section, For instance, at the Bi
atom in the perovskits crystal

Gxx = @yy = (2/RHBLER (A) — £ (F)] + Lax (A} = (2/R) B — 88 + B(B — )] = 0.

Similarly at the Ba atom

Gxx = Qyy =-2{8["'§xx F) + ‘Exx(A)] + Lxx (M)}/R3 = 2[8‘1 - 85 + 8(16 —a)l= 0.
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And at the oxygen atom

gL = (2/R)Eex(B) — 3, (B) — £ee(A)] = (2/R®)[8(28 — &) — 8(2cx — B) — 8(8 — a0)]
‘ = 32(8 — &)/ R® C 23
gp = (2/RDIE,(B) — £xx(B) — 5y (A)] = 64(cx — B)/R>.

However, vanishing EFG at Bi and Ba as well as that gy = —2g, at O conid be
aniticipated beforehand from the cubic symmetry and the condition g.x + gy, + g, = 0.
By the same reasoning EFG is zero at all the atomic positions of the crystals mentioned in
table 1 with the exception of cations in BCC symmetric crystal Cg(')' A7 . There at the edge
and face middles it will be, respectively,

g1 = —2g1 = —(1/R*{16[&yy (E) — £ (B)] = £y (A) = £,y (M) = 64(8 — )/ R
gL = —2g; = —(L/R)HI6[E,,(F) — £, (A)] + Lz (A) + £ (M)} (24)
= (1/RH[328 — 320 + 32(8 — )] = 64(8 — )/ R®

and L denotes the perpendicular component to the edge in the first case and to the face in
the second case. The remaining exception is the Cu atom in Cu;O, for which all diagonal
components are zero and non-diagonal are —16£,.(R’). The latter means that the EFG tensor
is diagonal in the axes directed along and perpendicular to the Cu-O line where

gp = _'qu = _32§xz(R’)- (25)

Thus owing to the cubic symmetry and the tensor nature of EFG, here only two constants
a—pB and &, (R") are needed for a full description of all atomic positions in all cubic crystals.
This is somewhat surprising since for the scalar potential three constants were necessary
[5]. However, from the symmetry argument only it cannot be established, for example,
that —g{0}/g(Rb) = (RCmA*'/RBaBiOg)3 and that g,(0) < 0, gy = —2¢,(0) > 0 in the
perovskite crystal. The latter inequalities are in accordance with the greater hardness of
the longitudinal vibrations of the oxygen atom as compared to the transverse ones, as their
amplitudes show, being equal to 0.12 A and 0.26 A {8], respectively. It sould be recalled that
EFG compaonents contribute significantly to suitable atomic force constants [9]. Vanishing
of EFG for Bi and Ba also agrees with the isotropic type of their vibrations [8].

Another interesting property may be noticed from table 1 for the perovskite crystal.
This is the existence of a network with zero potential. The period of this cubic network
is half the lattice constant: its vertices are sitnated at the points with quartered coordinates
1/4, 3/4, etc. Indeed, from equations (10} vanishing of the potential factors follows
E(x,y, I/2) = £(1/2,y,2) = £{x,1/2,z) = 0. Then the sixth line of table 1 means
that the potential turns to zero if any two of the three coordinates are equal to 1/4 or 3/4.
A similar property holds also for the BCC CgpAs crystal.

Calculation of EFG at an arbitrary point of any crystal from table 1 and in some other
crystals may be achieved by means of the mentioned program, which gives the necessary
values to five decimal places in a few seconds even on a pC AT 286/287.

For instance, in CepA3 of symmetry A15, the non-zero gradient appears at the anion sites
as a consequence of displacement of cations from their positions in the edge and face centres.
Suitable geometrical factors are &, = ~3.84279, £, = —10.06029 for the Cgy centre.
Since CgoAy is a superposition of the two above systems with opposite displacements, here
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the EFG tensor has an axial symmetry and —&;; = &, -+ &, = =~-13.90308. The same
value remains in the exotic system CgpAg [¥0] since addition of the BCC CgoAj lattice to
Csodg gives no contribution to anion sites. EFG remains also axially symmetric in the CgpAy
Immm system but here the anisotropy is larger: &, = 19.97588. For cations it is much
greater, e.g. in CepAs AlS the gradient components for these positions are £, = 379.8635,
&yy = —20.8083, etc. -

A more complicated example is presented in table 2. There, the contributions of the
crystal field to EFG components that are additional to the intraionic ones are given for three
inequivalent carbon atoms of fullerene in the Rb-doped lattice [11]. A special orientation
of the icosahedral axes relative to the cubic ones (orientation ‘A’ in terms of [6]) is used,
which does not split the half-filled level ty,.

Table 2. Crystal-field contribution to gradient (e/A%) in CZy A7.

Point

number k¥ yy xy xz yz
CanAz, FCC, R = 14,436

I —0.01482 000246 —-0.04303 -0.03177 001792

2 —~0.0168¢ —0.01877 -0.34453 —0.11530° —0.13240

3 -0.00323 001210 © 0 —0.00760
Cends, BCC, R = 11,787

1 0.02657 —0.00931 -0.02762 -0.02292 -0.00087

2 0.01936  0.01428 -0.02486 —-0.00606 -—0,00833

3 —0.0566%  0.09758 © 0 . =0.04450
Caphg, BOC, R = 11.548

1 -0.03909 (0.02454 -0.12096 —0.03754_ —0.06029

2 0.01632 0.00442 -0.15967 -0.03770 -0.02771

3 —0.00429% —0.11187 004234 O —-0.07299
Csuh4, BCC, R = 11.657

1 —0.00078  0.01197 -0.04894 —0.01208 —0.03052

002583 002569 -006l61 —001593 -0.00689
3 —00110s -0.03935 003870 O -0.06778

4, Necessary generalizations

The first notation concerns the use of the skew angle coordinate system defined by the
absolute values a;, aq, a3 of the lattice vectors @, @2, @3 and the angles between them,
%2, ths, P3. These are connected with the Cartesian coordinate system by

a, = aki, =14 =4,93=k (26)

where the tensor algebra notation is used with the standard summation over similar upper
and lower indices. Without loss of generality it may be assumed that

a]’ = gp sin Py a% =0 a? = a; costh; ﬂ?f = a% =0 ag’ =da3

azl = a5(cos )2 — cos P13 cos thz)/ sintha a% = azﬁ/ S_iri-l}lg, ag = a_z €08 3
)]
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where /T is defined below. The elements b} of the matrix of the inverse transformation

biat = 8 : (28)
define a set of contravariant vectors

b" = by 29
which obey

b - ay = blaj(iy - 1,) = blays) = blaj = 5. (30)
We see from equation (30) that 5" are nothing other than the vectors of the reciprocal lattice
b = [araal/V v =lazal/V ¥ = [aia2)/V V=ailezas].  (31)
The covariant metric tenser is

Gik = (@; - ag) = a;a; c0s Dy, (32)
while equations (31) allow one to find its contravariant coordinates
g% = (b - b") = (cos ¥y cos By — cos )/ (@a, T) g =sin? 0y /a’T (33)
and equations (30) guarantee that the necessary condition

gikg =& — (34)
is fulfilled. The determinant of g equals V? since g, = a}’ﬁ,’:, where
V= a,za%ag(’l — cos? 13 — cos? 3 — cos® 3 + 2 cos Bz cos Pz €OS P3) (35)
which determines the value of T as
T = V2/(a10283)% = 1 — cos® §j3 — c08” T3 — COS? Doz + 208 P12 008 3 COS oz, (36)

The radius vector of an arbitrary crystal point will be determined by its contravariant
coordinates:
r=0bx; = aux' x'=x =y =z x; = gax®. (37)

Then the field, i.e. the potential gradient, is expanded over the vectors of the reciprocal
lattice

aV/or = (BV/3X)i + (0V/3Y)j + (8V/9Z)k = (AV/aX)b i, = (AV/axH.  (38)
Similarly EFG & = 9%V /8x*8x* is a covariant tensor and Laplacian vanishing looks like

A= gikn‘;-‘ik = 0. (39)
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By the same reasoning caiculation of the NQR coupling constant ¢ requires inclusion of
the inverse transformation (28) since the nuclear quadrupole tensor is usually known in
Cartesian coordinates: ¢ = Qy;¢;; where

qij = ek} (40)
The values of 5f corresponding to equations (27) may be found from

bl = [4 4 j(cos B3 cos Fg3 — cos Ba)/+/T]/ sin v b? = jsintha/(@a/T)
(41)
b = [—(cot $13)i + (cos 3 cos B3 — cos 1923)j[(ﬁ sin¥y) + kl/as.

Now we can generalize the definition of the L system to an arbitrary lattice formed
by a;, as, a3. It will be a periodic set of parallel straight lines directed along a; with a
longitudinal period a3: charges +¢ are situated at the origin and at the end of a3 and —g at
the middle between them. Thus, 4 = a3/2 in the previous notation. (The further necessary
generalization when —g is situated in an arbitrary point between two -kg charges will be
considered below.) The origin of one of these straight lines is its intersection point with the
{a, a2) plane

N =ma, +nay (42)

where m, n are integers. The potential at the observation point r in the zero cell is
determined by the lengths of two segments that describe the position of this point relative
to the line creating the potential: the length g, » of the perpendicular from this point to the
line and the distance p,,, from the base of the perpendicular to the line origin. It is evident
that

Dran = @3(@3 * Ty) = Prmnt3/2 Pmn = Xmit + Yolia +22 43)
and

Bhy = pE,al/4 PL, = X% + yovar — 2 Yatii 44)
where
4y = 2a; cos Py2/az Uy = 2a; cos Pz /as uyy = 4af sin® $13/a3
= 4a§ sin® 15‘23/(13"" Xm=X—m Yo =Y¥—h 45)

Then according to equation (1} we obtain the desired generalization

V) =29 ) Clomn, Pra)/s. (46)

m,n=—0c0

The function C(p, z) has already been defined in equation (3). The EFG components
are obtained by a proper differentiation of equation {46) and will not be given explicitly.
The condition (39) may be used for checking.

The second generalization is connected with the method of deseription of arbitrary
charge distribution within a cell. Instead of the L system we consider a similar set of lines
but with the negative charge at an arbitrary distance 4 (in units of the cell edge length) rather
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than in the middle between positive ones: L;{(d) where i = 1,2, 3 denote the direction of
the charge line. The former system L in new notation is L = L3(1/2). The corrcspondmg
potential is obtained by means of the function S${p, z):

S(p.2)=[F(p,z)— Flp,z—d))/az - 47

where F(p, z) describes the potential of two sets of opposite charges equidistantly distributed
along two parallel lines on a distance p between them and mutvally shifted by z. According
to [7, equation (8.526.1)]

F(p,2) =4 Ko(2mip) cos(27£2)
£=1

(48)

o0

F(p,2) =2AC+Ip/D = ) [+ &+ -2} ¢,

=00 £=1

In the limit case p = 0 the potential is described by the logarithmic derivative of I'-function
(C is the Euler constant)

F(0,2)=2C+ W@ + ¥l -2} = 1/z(1 —2) + zzZZ{A(kz 2 “49)
k=]

The former function in this notation is
Clp.2) = 3[F(p/2,2/2) — F(p/2, (z— 1)/2]. (5%

The systems L;{d) allow one to obtain the potential of an arbitrary cloud of periodically
distributed point charges. If a charge Q; is situated at a point x, y, z in the unit cell, adding
subsequently to it three systems La(z), L2(y), Li{x) with the origins at (x, v, 0}, (x.0,0),
(0,0,0), respectively, we place it at the cell origin where it annihitates the other charges
similarly displaced since the net cell charge is zero. Finally the decomposition looks like

L =37 0,01 06)loss +La0)lso0 + La(zs)lao] 51

i=1

and by means of subsequent application of equation (47) the problem is solved completely.
If in some cases the net charge is non-zero we can place a suitable compensating charge
at the cell origin. The programming of equation (51) is as easy as that of the cubic crystal
case, and the corresponding program works as fast as the one mentioned.

As a simple example we present the value of the Madelung constant £ and EFG
geometrical factors for the hexagonal close packing of layers of opposite charges: & =
1.23557, £yp = &y = =5.10932, &, = 2.55462, &, = 27.24927, &,, = &, = 0. This
follows from equation (51) where a; = &3, a3 = @12./(2/3), P42 = 120°, B3 = By = 90°.
The comparison with a suitable value for the cubic tlose packing of similar layers, i.e. with
the L system itself for which £ = 1.370 68 (3], is quite reasonable: the mutual repulsion is
stronger in the first case.

A more complicated calculation illustrates the application of the present technique to the
‘idealized” Y-Ba-Cu~O model [5]. The potential constants in the equation V = e£/R and
geometrical EFG factors from equation (1) for non-equivalent atomie sites are given in table 3
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(§zz = —Exx —E&yy), where R is the transverse size of the unit cell and ¢ = 3R. The notation
of atomic positions is taken from [12]. The corresponding potentials for R = 3.87 A differ
from those reported in [12] by no more than a few tenths of an eV except for the data for
Y, where the difference reaches 10 eV, and for O1, where it is 4 eV for the case (a) of [12].
The influence of the orthorhombic distortion is small. For ¢ = R =389 A, b = 3.82 A,
¢ = 3R the constant terms in £ are: —8.1325 (Cul), —8.0561 (Cu2), 5.2576 (O1), 5.0317
{02}, 4.9786 (03), 7.0426 (04}, —5.6177 (Ba), —6.2044 (Y). The differences with those

EFG in cubic and other ionic crystals

in table 3 are less than 0.07.
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