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J. Phys.: Condens. Matter 7 (1995) 611-623: Printed in the UK 

Electric field gradient in cubic and other ionic crystals 

M M Mestechkin 
Institute ofPhysica-Organic and Coal Chemistry. R Luxemburg str 70, 3401 14 Donetsk, 
Ul;raiW 

Received 29 June 1994, in f i n d  form 14 September 1994 

Abstract. A melhod is developed for an accurate evoluatian of the electric field gradient (EFG) 
tensor in the cubic lattices of point charges. It is shown that only hyo values of the geometrical 
factors similar to the Madelung constants we necessary for calculation of all EFO components 
at all sites in all standard cubic crystals. The EFC tenwr at all carbon atoms in the different 
phases of alkali-doped fullerene crystals is presented as an example. It is demonstrated that a 
cubic~network of zero potential lines with halved lattice constant exists in perovskite crystals 
and some fullerites. A numerical procedure is proposed for calculation of EFG at any point of 
the unit cell for the arbitrw cloud of point charges. The method is based on the presentation 
of crystal sums by means of the McDonald functions. 

1. Introduction 

The calculation of the electric field gradient (EFG)% ionic lattices is of some interest in 
connection with the application of nuclear quadrupole resonance (NQR) methods to crystals 
with mainly ionic bonding, such as copper oxide ceramics, etc [1-3]. The expansion of the 
crystal potential over spherical harmonics in the vicinity of the node considered is usually 
used for this purpose [I]. The modified Evjen method [2-4] i,s also applicable. 

The present paper extends the method of Madelung constant calculation developed in 
[5,6] on EFG. It is useful to cast gradient components qfiy in a form similar to the electrostatic 
potential V = ( e / R ) [  

where is a geometrical factor similar to the Madelung constant 6. The proposed 
technique ensures the exact calculation of the geometrical constants and accurate 
comparison of the data for different crystals. Moreover, this representation allows one 
to express all EFG components at the nuclei for all the usual ionic cubic crystals in terms 
of two constants only. 

In the more complicated crystal YBa1CusO.l the geometrical factors of EFG components 
will be presented as linear forms with known coefficients of effective charges on two types 
of inequivalent oxygen and copper atoms. Thus the possibility arises of finding the charge 
redistribution between these atoms directly from NQR measurements. It may be recalled that 
the properties of high-temperature superconducting ceramics are often discussed in terms 
of charges an Cu and 0. 
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2. Geometrical factors of model systems 

We shall use decomposition of the cubic crystal potential into contributions from two 
model systems, L and M, already used for calculation of Madelung constants and potential 
geometrical factors for an arbitraly point [5.6]. The charge distribution of the first one 
(L) consists of the point charges of identical sign in the whole plane, and the charge 
signs in parallel planes alternate. The  second system (M) consists of parallel lines of 
identical charges whose signs alternate in the perpendicular plane. The potential for these 
has been expressed in terms of the zeroth-order McDonald function [6]. It only remains 
to differentiate these expressions for the present purpose. The technique proposed is rather 
universal and applicable independently of the existence of non-zero net dipole moment of 
the unit cell in contrast to the method of [4]. 

The expressions for the BFG components follow directly from equations (5) and (12) of 
[6]. For the L system these are 

m 

where the following notation is used: 

m 
C ( U ,  Z) = 4 E  Ko(n(2t. - 1 ) ~ )  C O S [ Z ( ~  - l ) t ]  

e= I 
(3) 

and K; is the ith McDonald function. 
Similar expressions hold for the-M system, where the geometrical factors are denoted 

by L": 
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m 

Here 

z is measured in units of d,  the distance between opposite charges, and x and y similarly 
are measured in units of ud, the distance in the x y  plane. The prime on the sum denotes 
missing out the term s = t = 0 for x = y = 0. It should be replaced by the constant 

m 
-4C(-1)‘/k3 = 3.6001707 

k=l 

for z = 0 and by 

 BY-^) + B ” ( ~ )  + v Z 3  (7) 

for z # 0 where B ( z )  is the known function 171 connected with the togaiithmic derivative 
of the Euler r-function. These series converge much more rapidly than l/p’ except in the 
vicinity of x = ~ y  = 0. 

For instance, we have for the points A and F (figure 1) for U = 2 

~ x ; , ( A ) ~ a = l . 8 8 0 1 3 6  Ex,,(F)=B=0.54174. (8) 

The accuracy may be controlled by means of symmetry conditions, which hold for the M 
system on substitution of x by y and vice versa in consequence of some latent identities 
between sums of the McDonald functions. 

The number of independent EFG factors for the main points may be significantly reduced 
on account of the symmetry requirements for the potential geometric factors. These are 
expressed by equation (6) from [6] (we use this occasion to correct a misprint in sign in 
this equation) 

f ( x .  y ,  z) = f(-x, y, z) = f ( x ,  -Y. z) = f ( x ,  Y. -z) = f ( Y ,  x ,  z) (9) 
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Figure 1. The main poinls of fhe cabic cell 

which is identical for both systems. The periodicity condition looks like 

f ( x  - 1/2. Y, z) = f ( x  + 1/2, y. 2 )  

f(x,y- l/2.z)=f(x,y+1/2,z) 

-f(x,y,z- 1/2)=f(x,y,z+1/2) 

for the L system. Signs should be changed for the M system in equations (10). 
Differentiation of equations (9) shows that mixed EFG components with the subscript of 
the perpendicular to some face vanish on this face. Therefore the EFG tensor is diagonal 
on edges. The same conditions hold in 'vertical' planes that pass through the cell centre 
N (figure 1). Thus, the EFG tensor is diagonal along the perimeter LEFN in the L system, 
and only the x z  component is non-zero on the line LN. Since the potential vanishes in 
the horizontal plane NML, the components tXx, Cyy and tr? also vanish there, as well as 
tZz = -& -cyy, and since the EFG tensor is diagonal at L, M and N it completely vanishes 
at these points. 

The roles of the central vertical and horizontal planes in the M system are interchanged 
as a result of the change of sign in~equation (IO). Therefore the EFG tensor is diagonal on 
lines ML and AE, and by similar reasoning it vanishes at L and E. Thus on the three lines 
of the square perimeter LNFE only cX? is non-zero, and on LE only ryr is non-zero. 

The additional restrictions follow from the connections between potential factors of L 
and M systems (equations (IO) and (11) in [6]): 

tXX(.,Y>Z,[i) =tJ,y(Y,x,z,u) t&,Y.Z,~) = & ( Y , x , z , u )  (11) 

etc, and similarly for {: 
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The values of U if not indicated explicitly are 112 for (, 1/J2 for ( I ,  2 for 6. In particular, 
for the vertical line passing through A we have 

(13) 
L X ( 0 ,  0,z) = g [ t x x ( o .  z, 0) - &,(1/2.2> 011 
Cy;y(O, 0, Z) = 8[ - tx , (O ,  Z, 0) - t y y ( 0 ,  Z, 0) + 6xx(1P3 Z, 0) +tyy(1/2, Z,  0)l. 
Taking into account the symmetry of the M system to this axis = cy?, we obtain a 
relation between EFG components of the L system at the horizontal edge and the parallel 
line passing through the centre 

From this it follows for x = 0 and x = 1/2 on account of notation (8) that 

where the subscripts denote orthogonal and parallel to the edge AD components. Then 

2 t y y k  0,O) + t X k !  0,O) = %ydx, 1/2,0) + t x h ,  1/2,0). (14) 

3a = 2tii(E) + h ( E )  38 = 2t~1(E) + tii(E) 

t ( E )  = 28 - a  tli(E) = kt - B.  (15) 

L ( G )  = <y;y(G) = 8[h.(P) - h ( Q ) l  = 4[t11(Q) -Cil(P)I (16) 

In the same way from equations (13) and (12) we have 

t , (H) = 16txz(R’) = 42.481 894. (17) 
The EFG components for the atomic positions in the M system with U = 1/dZ, which 

also enter compositions forming standard cubic lattices [5 ] ,  are also expressed through the 
same constants CY and 8.  From equation (9) in [5] presented in the~form 

g ( x . ~ , z , l / J 2 ) + g ( x - 1 / 2 , ~ - 1 / 2 , ~ ,  1/J2) 
= 2f(z, ( x  + Y)/2, Y - x .  2) + f(z, (x + y - 1)/2, Y‘- x ,  2) (18) 

we have 
<: , (x ,Y , z )+<; ’ : , (x -  1/2,y-1/2,z) 

I‘;,(x,Y,z)+5;.;y(x - I P , Y  - 1/2,z) 

= 4[6fz, (x  + Y ) P ,  Y - x )  +@(z ,  (x + Y - 1)/2, Y - x)l 
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3. Lattice contributions to EFG of atomic positions in  standard cubic crystals 

The potential of the standard cubic lattices including alkali-doped fullerites has been 
expressed in terms of a similar quantity for thc systems Land  M [6]. Since this expression 
is valid for an arbitrary point of the crystal volume the EFG components can be immediately 
obtained by a proper differentiation. These are given in table 1 (by means of this table 
some misprints that slipped into table 1 of [6] may be corrected). The results are presented 
in terms of the tensor functions tPv, and Z;:,. It is convenient to use rotated (by 45") 
tensor rlpu instead of CL": 
rlxr = ti:, + i& - 2G, ) /2  

r l n  = ti:, - i 3 J 2  

'Iry = (L  + c;y + 2$:,)/2 , +y = ti;, - &)/2 
(22) 

rlyz =~cr:, 4- C;.,)/Jz. 
Then suitable EFG components of the crystals are presented in terms of CPU, CPU and qpv with 
the same subscripts by means of equations from table 1. (The similarity of subscripts gives 
the possibility to omit them for the sake of brevity.) The results for the other crystals are as 
simple as those from table 1 but are not given explicitly in order to avoid the cumbersome 
equations for each component separately. Instead, all these have been programmed. 

Table 1. Gradient factors of cubic crystals. 

Cryslal Gradienr factor 

In particular the values of EFG  in^ the lattice sites can be obtained by means of table 1 
and the values of :, ( and t' mentioned in the preceding section. For instance, at the Bi 
atom in the perovskite clystal 

qxx = 4y3 = (2/R3){SILx(A) - hr(F)l + i A r ( N 1  = (2/R3)[?p - SkJ + S ( B  -.)I = 0. 

Similarly at the Ba atom 

qxx = q y y  = 2 { 8 [ - L ( F )  + t x x ( N I  t tx(M)1/R3 = W. - SkJ t S(kJ -all = 0. 
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And at the oxygen atom 

41 = (2/R3)[t.dE) - ~Y.v(E) - L ( A ) 1  = (2/R3)[8(28 -a) - - 8) - 8(8 -all 

= 32(8 - a) /R3 . (23) 

411 = (Z/R3)[t.&3) - L ( E )  - <&)I = 64(a - 8 ) / R 3 .  

However, vanishing EFG at Bi and Ba as well as that 411 = - 2 q ~  at 0 could be 
aniticipated beforehand from the cubic symmetry and the condition qxx + qyy + qir = 0. 
By the same reasoning EFG is zero at all the atomic positions of the crystals mentioned in 
table 1 with the exception of cations in BCC symmetric crystal C&&+. There at the edge 
and face middles it will be, respectively, 

411 = -2q1 = -(1/R3){16[tyy(E) - &z(E)I- - 5JM)J = 6463 - a)/R3 

41 = -2qn = -(1/R3){16[MJ? - LWI+ L ( A )  + t W 1  (24) 

= (1/R3)[32@ - 32a + 32(8 -e)] = 64(8 - a)/R3 

and I denotes the perpendicular component to the edge in the first case and to the face in 
the second case. The remaining exception is the Cu atom in Cu20, for which all diagonal 
components are zero and non-diagonal are -16&(R‘). The latter means that the EFG tensor 
is diagonal in the axes directed along and perpendicular to the Cu-0 line where 

411 = -2qi = -32(xz(R‘). (25) 

Thus owing to the cubic symmetry and the tensor nature of EFG, here only two constants 
a-,? and tzz(R’) are needed for a full description of all atomic positions in all cubic crystals. 
This is somewhat surprising since for the scalar potential three constants were necessary 
[5]. However, from the symmetry argument only it cannot be established, for example, 
that -q(O)/q(Rh) = (Rc ,A+/RB.B~~)~  and that ~ ( 0 )  < 0, 411 = -2q1(0) > 0 in the 
perovskite crystal. The latter inequalities a e  in accordance with the greater hardness of 
the longitudinal vibrations of the oxygen atom as compared to the transverse ones, as their 
amplitudes show, being equal to 0.12 A and 0.26 A [8], respectively. It sould be recalled that 
EFG components contribute significantly to suitable atomic force constants 191. Vanishing 
of EFG fo r~Bi  and Ba also agrees with the isotropic type of their vibrations [SI. 

Another interesting property may be noticed from table 1 for the perovskite crystal. 
This is the existence of a network with zero potential. The period of this cubic network 
is half the lattice constant: its vertices are situated at the points with quartered coordinates 
114; 314, etc. Indeed, from equations (10) vanishing of the potential factors follows 
& ( x ,  y. 1/2) = < ( 1 / 2 . y , z )  = <(I, l j2 .z)  = 0. Then the sixth line of table 1 means 
that the potential turns to zero if any two of the three coordinates are equal to 114 or 314. 
A similar property holds also for the BCC C60A3 crystal. 

Calculation of EFG at an arbitrary point of any crystal from table 1 and in some other 
crystals may be achieved by means of the mentioned program, which gives the necessary 
values to five decimal places in a few seconds even on a PC AT 286/287. 

For instance, in CaoA3 of symmetry A15, the non-zero gradient app& at the anion sites 
a.s a consequence of displacement of cations from their positions in the edge and face centres. 
Suitable geometrical factors are trz = -3.84279, tys = -10.06029 for the CSO centre. 
Since C6,,A6 is a superposition of the two above systems with opposite displacements, here 



618 M M Mestechkin 

the EFG tensor has an axial symmetry and -ezZ = fLX + eYy = -13.90308. The same 
value remains in the exotic system c60& [lo] since addition of the BCC C60.43 lattice to 
C,5&6 gives no contribution to anion sites. EFG remains also axially symmetric in the CsoA4 
Immm system but here the anisotropy is larger: = 19.97588. For cations it is much 
greater, e.g. in C6oA3 A15 the gradient components for these positions are tZz = 379.8635, 
cyy = -20.8085, etc. 

A more complicated example is presented in table 2. There, the contributions of the 
crystal field to EFG components that are additional to the intraionic ones are given for three 
inequivalent carbon atoms of fullerene in the Rb-doped lattice 1111. A special orientation 
of the icosahedral axes relative to the cubic ones (orientation 'A' in terms of 161) is used, 
which does not split the half-filled level tlu. 

Table 2. Crystal-field contribution to gradient (efA3) in CZiA:. 

Point 
niimher rr "Y  Y -  

I -0,01482 0.00246 -0.043 13 -0.0317; 
2 -0.01684 -0.01877 -0.34453 -0.11530~ -0.13240 
3 -0.00323 0.012 10 0 0 -0.007 60 

CmA3, BE, R = 11.787 
I 0.02657 -0.00931 -0.02762 -0.02292 -0.00087 
2 0.01036 0.01428 -0.02486 -0.00606 -0.00833 
3 -0.05669 0.09758 0 0 ~ -0.04450 

%Ab, BCC, R = 11.548 
I -0.03909 0.02454 -0.12996 -0.03754~ -0.06029 
2 0.01632 0.00442 -0,15967 -0.03770 -0.02771 
3 -0.00429 -0.11187 0.04234 0 -0.07299 

CeiAi, BCC, R = I 1.657 
1 -0.00078 0.01197 -0.04894 -0.01208 -0.03052 
2 0.02583 O.MS69 -0.06161 -0.01593 -0.00689 
3 -0.01105 -0.03935 0.03870 0 -0.06778 

4. Necessary generalizations 

The first notation concerns the use of the skew angle coordinate system defined by the 
absolute values a l ,  az, a3 of the lattice vectors al, a2, a 3  and the angles between them, 
$12, $13, Om. These are connected with the Cartesian coordinate system by 

(26) 

where the tensor algebra notation is used with the standard summation over similar upper 
and lower indices. Without loss of  generality it may be assumed that 

U ;  = al sin 013 a: = o U: = al c o s ~ I 3  U: = U: = o U: = a3 

U: = a ~ ~ c o s ~ ~ ~ - c o s 1 ~ ~ ~ ~ 0 ~ ~ ~ ~ / ~ i n ~ ~ ~  a: = a 2 f i / s K ~ l ,  U: = u z c o s ~ m  

. .  il = i, iz = Z, 23 = k k. a, = a , z ~  

~~ ~ 

(27) 
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where JT is defined below. The elements b; of the matrix of the inverse transformation 

b;a: = S: (28) 

define a set of contravariant vectors 

b" = b;ik (2% 

which obey 

b" . u k  = b,yai(i.T . i,) = bYaL8; = b:ai = 8;. (30) 

We see from equation (30) that b" are nothing other than the vectors of the reciprocal lattice 

b ' = [ u z a 3 J / V  b 2 = [ a 3 a l ] / V  b3=[a1uzJ /V V=a1[uzu31. ~ (31) 

The covariant metric tensor is 

g i k  = (ai . a k )  = aiak cos 8 j k  (32) 

while equations (31) allow one to find its contravariant coordinates 

gik = (b' . bk) = (cos 

and equations (30) guarantee that the necessary condition 

(33) 2 cos fiik - cos +jfi*)/(a;a*T) g" = sin' i?jk/ai T 

gikgki = 8; ..-_. (34) 

is fulfilled. The determinant of g equals V 2  since giK =ala:, where 

v2 = a:Ga:(1 - CO? $12 - cos2 $13 - cos2 $23 2 cos $12 cos 013  cos e=) (35) 

which determines the value of T as 

T = V ' / ( a 1 a ~ a 3 ) ~ =  1 -cos'$12-cos'$13 -cos2~~++c0s i?p12cos~l3cos i?~ .  (36) 

The radius vector of an arbitrary crystal point will be determined by its contravariant 
coordinates: 

(37) k 
T = b'xi = six' X I  = x  x = y  x 3 = z  Xi  = gikX . 2 

Then the field, i.e. the potential gradient, is expanded over the vectors of the reciprocal 
lattice 

a v / a T  = (av/ax)i + ( a v / a r ) j  + ( a v / a z ) k  =~(av/axy& = (av/axi)b'. (38) 

Similarly EFC tix = a2V/ax'axk is a covariant tensor and Laplacian vanishing looks like 

A = g"f;k = 0. (39) 
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By the same reasoning calculation of the NQR coupling constant q requires inclusion of 
the inverse transformation (28) since the nuclear quadrupole tensor is usually known in 
Cartesian coordinates: q = Q i j q i j  where 

(40) k e  qij = e&bi bj . 

The values of b: corresponding to equations (27) may be found from 

bl = [i +  COS $13 cos 19z - cos 1912)/,/T]/sin $13 

b3 = [-(coti*13)i+ (cosB1~cosOl3 -cos19~3)j/(J?:sin~13) +El/a3. 

b2 = j sin$13/(a~JT) 
(41) 

Now we can generalize the definition of the L system to an arbitrary lattice formed 
by a i ,  a2. a3. It will be a periodic set of parallel straight lines directed along a3 with a 
longitudinal period a3: charges +q are situated at the origin and at the end of a3 and -q at 
the middle between them. Thus, d = a3/2 in the previous notation. (The further necessary 
generalization when -q is situated in an arbitrary point between two +q charges will be 
considered below.) The origin of one of these straight lines is its intersection point with the 
( a ] ,  ad plane 

N =mal +na2 (42) 

where m, n are integers. The potential at the observation point T in the zero cell is 
determined by the lengths of two segments that describe the position of this point relative 
to the line creating the potential: the length p,." of the perpendicular from this point to the 
line and the distance P,,~ from the base of the perpendicular to the line origin. It is evident 
that 

13," = . = pm,a3/2 pmn = + ynu2 + 22 (43) 

and 

(44) - 2 = 2 2  2 P,, pmna3/4 P:, = ~ X ~ U I I  + Y n U u  -~X,Y,UIZ 

where 

UI = 2a1 cost?lz/a3 

4 2  = 40, sin vZ& x, = x - m 

Then according to equation (1) we obtain the desired generalization 

2 . 2  2 
u2 = 2a2cosi*23/a3 U I I  = 4a1 sin ??13/a3 

(45) 
y n = y - n .  2 . 2  

The function C(p,  z )  has already been defined in equation (3). The EFG components 
are obtained by a proper differentiation of equation (46) and will not be given explicitly. 
The condition (39) may be used for checking. 

The second generalization is connected with the method of description of arbitrary 
charge distribution within a cell. Instead of the L system we consider a similar set of lines 
but with the negative charge at an arbitrary distanced (in units of the cell edge length) rather 
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than in the middle between positive ones: Li(d) where i = 1,2,3 denote the direction of 
the charge line. The former system L in new notation is L = L3(l/2). The corresponding 
potential is obtained by means of the function S(p, z): 

S(P ,  z) = [ F ( p ,  z) - F(P,  z -&]/as (47) 

where F ( p ,  z) describes the potential of two sets of opposite charges equidistantly distributed 
along two parallel lines on a distance p between them and mutually shifted by z .  According 
to [7, equation (8.526.1)l 

In the limit case p = 0 the potential is described by the logarithmic derivative of r-function 
(C is the Euler constant) 

m __ 
F ( O , Z ) = ~ C + Y ( ~ ) + Y ( I  - z )  = l/z(l - Z ) + ~ Z ~ C [ ~ ( ~ ~ - Z ~ ) I - ' .  (49) 

k=l 

The former function in this notation is 

C(P, Z) = $IF(p/2,2/2) - F ( P / ~ ,  (Z - 1)/21. (50) 

The systems Li(d) allow one to obtain the potential of an arbitrary cloud of periodically 
distributed point charges. If a charge Q,? is situated at a point x ,  y, z in the unit cell, adding 
subsequently to it three systems L~(z), Lz(y), LI(x) with the origins at ( x .  y .  0). ( x .  0, O), 
(O,O,O), respectively, we place it at the cell origin where it annihilates the other charges 
similarly displaced since the net cell charge is zero. Finally the decomposition looks like 

L = Q A  LI (x.dlow + L z ( ~ . J ~ ~ , a o  + Ls(z ,d l~ ,~ ,o l  (51) 
i=l 

and by means of subsequent application of equation (47) the problem is solved completely. 
If in some cases the net charge is non-zero we can place a suitable compensating charge 
at the cell origin. The programming of equation (51) is as easy as that of the cubic crystal 
case, and the corresponding program works as fast as the one mentioned. 

and EFC 
geometrical factors for the hexagonal close packing of layers of opposite charges: $ = 
1.23557, czx = cyy = -5.10932, = 0. This 
follows from equation (51) where a1 = U ? ,  a3 = a12J(2/3), 012 = 120", el3 = e23 = 90". 
The comparison with a suitable value for the cnbicclose packing of similar layers, i.e. with 
the L system itself for which 6 = 1.37068 [5], is quite reasonable: the mutual repulsion is 
stronger in the first case. 

A more complicated calculation illustrates the application of the present technique to the 
'idealized' Y-Ba-Cu-0 model [5]. The potential constants in the equation V = e c / R  and 
geometrical EFG factors from equation (1) for non-equivdent atomic sites are given in table 3 

As a simple example we present the value of the Madelung constant 

= 2.55462, cz2 = 27.24927, cXz = 
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(czz = -exx - E y y ) ,  where R is the transverse size of the unit cell and c = 3 R .  The notation 
of atomic positions is taken from [12]. The corresponding potentials for R = 3.87 A differ 
from those reported in I121 by no more than a few tenths of an eV except for the data for 
Y, where tbe difference reaches 10 eV, and for 0 1 ,  where it is 4 eV for the case (a) of [IZ]. 
The influence of the orthorhombic distortion is small. For a = R =~3.89 A, b = 3.82 A, 
c = 3R the constant terms in 5 are: -8.1325 (CUI), -8.0561 (CuZ), 5.2576 (01). 5.0317 
(02). 4.9786 (031, 7.0426 (041, -5.6177 p a ) ,  -6.2044 (Y). The differences with those 
in table 3 are Jess than 0.07. 
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